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1. INTRODUCTION
This paper is concerned with the statistical assessment of dependency

beyond autocorrelation in the context of nonlinear time series models. The

e

:?g ) central theme is that residuals from models fitted according to

3,‘ inapplicable linearity assumptions can also profitably be used for further

W analysis beyond linearity. A well known property of linear time series
j residuals is that they are uncorrelated; in the context of linear models
ftj they should also be independent, apart from the effects of parameter

estimation with short series. However, in the context of nonlinear models

sy

ii;::& it is not often recognis_ed that uncorrelated residuals also hold

::EEE information concerning higher order dependence in the data. Developments

j of such a higher order residual analysis will be explored here, in

f{: particular for two types of nonlinear autoregressive model which have .the

‘:53 usual linear Yule-Walker autoregressive correlation structure. Some higher

a0 order dependency correlations will be obtained. In a later paper, the

:gt;:’ suggestion of reversed residuals will be made, and the analysis given in

3?‘; this paper will be extended to encompass these reversed residuals.

K

J

f;‘:: 2. AUTOREGRESSION AND LINEAR AUTOREGRESSIVE RESIDUALS

e

;i& 2.1 Autoregression for Nonlinear Models

': The standard form of autoregression needs widening for ‘use with

:5;". nonlinear models; we consider first the standard form which is explicitly
%

%%:é autoregressive in a linear additive way and then several weaker variants.

:5' A stationary time series (X¢) of mean u is assumed.

: ) Under the linear autoregressive model, of order p, the (X.} satisfy the

:é% equation

"(.:3 : Xg—pmay(Xg-1-k )+a2(Xg-2—k )+, . .+ap(Xe—p—u )+e€p,  t=0,%1,%2,... (2.1)

::’; where the e, are independent and identically distributed and u,o,x2,...,0p

::::: are fired parameters; these parameters are also assumed to satisfy the

’:.: condition that the polynomial l-o0jz-.. .-cpzp has all roots outside the unit

o 1
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circle.

A more general definition of autoregression of order p, could be the
linear conditional expectation requirement that |
E(Xe—1iXga1, Xe=2s 0. )

= a3 (Xgay =k )4a2(Xgg=h)+. . .+0p(Xe—p=p), t=0,21,%22,... . (2.2)

Note that the conditional expectation is with respect to all previous X¢.
The definition (2.1) implies (2.2) but not vice-versa. Thus this
definition could apﬁly to models which are not' of the .near form (2.1),
either because the e; are dependent, but still with ol [Xg-1:.Xg-2/...)=0,
or because the mn§e1 has some other structure altogt - :. For instance,
there are the random coefficien: models of Nicholls a. Quinn (1982), the
exponential distribution random coefficient models of .awrance and Lewis
(1981,1985), the discrete distribution random coefficient models of Jacobs
and Lewis (1983), and the gamma-beta random coefficient models of Lewis
(1981).

Random coefficient autoregressive models of order p take the general

form
Xp = Acl1) Xeoy+Ae(2)Xp o+, . . +AL(P)Xep+Be, t=0,%1,22,... (2.3)

where the vector of coefficients (A¢(1),a:(2),...,a¢(P) B} is a stationary
vector 3equence of independent random variables, independent of
Xt~1.Xe-2,..., and sometimes in addition, By is independent of the random
coefficients A¢(1) at time t. A roots condition, analogous to that
required for (2.1) is also needed. It is easy to see that such models
satisfy the linear conditional expectation definition of pth order
autoregression, but are nonlinear in the sense of (2.1); see also Lawrance
and Lewis (1985) for further discussion of the meaning of nonlinearity. A
first order case of the type (2.3) will be used to illustrate the proposed
method of residual analysis of autoregressive nonlinearity.

A further and weaker definition of autoregression is the requirement

that the autocovariances of the (X.), denoted by (v}, Jjust satisfy

Yule-Walker linear difference equations of the form,

2




S Y=ol Yp-1+02Yr-2+. . . ¥OpYyr-p:  Yr=Y-pr, ¥=1,2,... (2.4)

for suitable constants a3,x2,...,0p;7 this will be referred to as

L ., Yule-Walker autoregression. It is true for processes which satisfy (2.1)
3N
:,‘;E-‘:‘ and (2.2), as may be verified in the usual manner by multiplying X¢ by Xe—r
n !Q’
N }’ and taking expectations. The rsverse is not true; (2.4) does not imply
ir?.? (2.1) or (2.2). A case in which (2.4) holds but in which (2.1) and (2.2)
Lo . ‘

f"'
::::': do not, is the product autoregression model of McKenzie (1982), where, with
LW
DL
R P=1, E(Xg|Xg-1.Xg-2....) is a fractional power of Xp—y; this model will
Wy )

also be used in Section 4.3 as an ilustration of the proposed residual

i
iA[‘:‘l.r' methods.
e
:'): A variety of other models can satisfy the Yule-Walker definition of

U
' *

autoregression, and yet not satisfy the linear conditional expectation
definition. Amongst these are first order Markov chains under certain

conditons, and others such as the semi-Markov generated processes discussed

in Cox and Lewis (Chapter 7, 1966) and Lewis (1980). Notice that we do not

:z;igz: . define nonlinear autoregressive models in a constructive way. The class is
%;'::: 80 wide as to make this impossible; one such class has been studied by
.:%;"l Jones (1978). Rather, we require that the autocorrelations should satisfy
:E:‘? linear equations, similar in structure to those satisfied by the
2": autocorrelations of linear autoregressive models. In view of this, our
i'.l’: suggested analysis extends, rather than supercedes, conventional methods.
-~

’Ezs 2.2 Definition and Discussion of Linear Autoregressive Residuals

i':: For the analysis of time series data involving models satisfying (2.1),
;: . or (2.2) or minimally (2.3), the use of linear autoregressive residuals of
EE::;E order p, defined as

S:fj;:: - Re(P) = (Xe=p)—ap(Xp-1-n)-02( Xe—2— ). . .=ap(Xe—p=h) (2.5)
‘:' is suggested. This suggestion is based on the following theorem, which is
,:.‘: a generalization of a result given in Lawrance and Lewis (1984, Section
.:“::‘ 7.2) for p=2.

=;’ 3
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Theoren. Let the stationary process (X} satisfy the Yule-Walker type
equations (2.4). Then the linear autoregressive residuals (Ry(P)} defined
at (2.5) are uncorrelated (although not necessarily independent).

Proof. The autocovariances of the residuals (2.5) are

; é:‘g Cov(Re(P), Reyp(P)] = Covl{(Xp—p), Resrl{P)1~a1Cov((Xe—1-n), Resr(P)1-. ..
’.5.’5
3:}3:: "“pc°v[(xt—p‘“)lnt+t(p)] (2.6) .
' = Cov((Xg=h),Regsr{P)I=a1Cov((Xe~n), Resrsr(P)1-. ..
\_‘:’ﬂ
o —apCov((Xe=), Resrspl P)1. (2.7)
AT
:::;: Equation (2.7) follows Dbecause the (X ]} process is stationary and

e
(A0}

consequently the (Rt(p)} process is stationary. The covariances in (2.7)

’;':' need only be considered for positive lag since autocovariance is an even
HQ"K

W,
";:‘t: function of r. Then the crosscovariances on the right-hand side of (2.7)
DX
K

- are all of the same type and given by
RN
"g\:. Cov((Xe=n), Rpsr(P)] = Cov((xg~u), ((Xesr=h)=a1(Xgsr-1=H). . -=0p( Xg4r-p=k)}]
¥

\

:{::‘ - Yr=X1Yp-1—=- - .-GPYr.p r=1l,2,... . (2.8)
\
" Now by the Yule-Walker equations (2.4), the expression (2.8) is zerc. Thus
Sy using (2.8) in (2.7)
L
1 Cov[Re(P),Re (P = 0 r=tl,:2,..., (2.9)
'é:> as was to be proven. The proof is immediate for the linear autoregressive
nbr
D model (2.1), since Ry(P) = ¢, and e and Rp4r(P) are by definition
%‘;:;‘
il independent.

[}

Note that the linear autoregressive residuals (Rt(P)) will generally

still be dependent though uncorrelated in nonlinear modelling of the (X}:

85
:‘é with the linear autoregressive model (2.1) the (Rt(P)) will not only Dbe
)
:" uncorrelated bdut also {ndependent, It (s this difference which will be
I
‘ exploited to explore nonlinearity in pth order nonlinear autoregressive

s
-

processes. The dependency attributable to parameter estimation is taken to ’

be small in the large scale applications we have in mind; indeed, nonlinear

o e
I

-

modelling of short series of data may well be hard to justify.

-
x ]

Pl s s

The quantities Rt(P) are autoregressive residuals in the sense that

L
)

:

¢
!ug
)
At

R(P) is the residual of X, after subtracting off u¢(P), its best linear

2
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least squares predictor in terms of Xi-3,Xe-2:..., given by
ue(P) & pday (Xg—y~4 )+02( Xgm2~K )+, . . +ap( Xg—p=s ). (2.10 )
Thus the residuals (Rp(P)} give the basic way of taking out the linear
correlation component in models with pth order autoregression minimally of
the 'Yule-Walker' form (2.4).
A further point worth noting about the residuals Ry(P) concerns their

crosscovariances with the Xp‘'s. In the proof of the theorem it is seen

" that Cov(Xe=p,Re4p(P)] = 0 for r = 1,2,... . However, the other half of

these crosscovariances is non-zero.
Example: The (nonGaussian) linear AR(1l) model
Taking (2.1) with p=l,and p instead of aj, the crosscorrelation of Xe-u and
Re—r(P) in the AR(1) model is given by

Corr(Xe=u,Re—gp) = (1-p2)1/2 pT  for r=1,2,3,...; (2.11)
the superscript has been dropped from Ry.y, a8 it will be in similar future
use. Note further, that in this case Rg4r i3 independent of X for
r=l,2,... . Purther use of (2.11) will be made in Sections 3 and 5.

For the use of (Rt(P)} in data analysis, the order p of the linear
aspect of the autoregression needs to have been chosen; any of the
available standard methods may still be used. In addition, of course, the
K,a},%2,...,0p need to be estimated; there are at least two convenient
possibilities: (1) the assumption of a linear autoregressive model like
(2.1) and the use of least squares estimation, and (2) a non-model based
approach to estimation employing the first p Yule-Walker type equations
(2.4). The latter is suggested here; however, Tjostheim and Paulsen (1983)
recommend (1) when dealing with modest sized samples from linear models, on
account of serious estimation bias with the Yule-Walker estimates. Since
the use envisaged here is primarily with nonlinear models and substantial
sets of data, the superiority of (1) over (2) is not established or

crucial,
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3. ASSESSMENT OF HIGHER ORDER DEPENDENCE

Since the linear autoregressive residuals (R.(P)} of (2.5) have zero
covariances when (2.4) holds, but for nonlinear processes need not be
independent, a residual analysis of this nonlinearity can be based on an
assessment of their higher order dependence. To consider what form this
might take, we note that the use of (X2} has been suggested by Granger and
Andersen (1978,p.63) for bilinear models, for which in many of the simple
cases the X have zero autocorrelations th;m'elves. The corresponding
initial suggestion here for a residual analysis is, as was Dbriefly
illustrated in lawrance and lLewis (1985), to use the residuals ((Rt(P))z}.
Displays can then easily be made of the associated autocorrelation
functions, scatter plots, periodograms, cumulative periodograms, etc, using
standard (second order) time series software.

However, the autocorrelations of ((Rt(P))z) are fourth order quantities
in the original series (X¢}, which is a double jump from the second order
autocorrelations of the series (X}. Such quantities will be very
difficult to handle theoretically with most types of nonlinear model.
The crosscorrelation function of (Rt(P)) and k(Rt(P))z) is essentially
third order and is preferred here; for previous ugse see Subba Rac and Gabr
(1964) and Lawrance and Lewis (1995). Since this crosscorrelation function
involves thé variance of ((Re(P))2), it also needs some fourth order joint
moments of (X¢)} up to lag p. The necessary calculations of all these
quantities for two nonlinear models will be given in Section 4.

The behaviour of the crosscorrelation function of (Ry(P)} and
((Re(P))2) may be judged against the fact that the (Ry(P)} are independent
for the 1linear autoregressive model of order p, and hence the
crosscorrelation function of (Re(P)} and ((Re(P))2) will be zero except at
lag zero. For the random coefficient autoregressive processes considered

in Section 4, the suggested crosscorrelation function will be shown to

posess a useful ~ut-off property; this generalizes the NEAR(2) result given
6




e
- e pu B En
q Y
2 o R -

RSO
.é"'i'v‘l‘a\\'- ®

:

N
3
,q'
LY
L)

s .'\ X\
shalghy

l-!' 54, '.‘g“

in Lawrance and Lewis (1985%5).

T™wo rather simpler crosscorrelation quantities can be proposed from
consideration of the zero covariance result of (2.8), and the additional
fact that when the pth order linear autoregressive model holds, X, and
Re+p(P) (r=1,2,...) will be independent, and not 3just uncorrelated.
Working in terms of (X¢) adjusted for its mean u, which is better
computationally and often nicer thecretically, the following quantities may
be considered,

Corr{(Xe—un)2,ResplP)], for r=0,%1,t2,... (3.1)

Corr(Xe—u. (Re+r({P))2], for r=0:l,%2,... . (3.2)
These autocorrelations are not equivalent in the aspects of higher order
dependency of the (X¢)} process which they assess. To see this, note that
the covariance corresponding to (3.1) involves only third order joint
moments of the form E[(Xe—u)%(Xe4r—i~p)), i=0,%l,...,tp while the
covariance corresponding to (3.2) involves additional joint moments of the
form E{X¢—i ) Xp+r—s X Xe4p-i)), i=0,21,...,2p. Purther, the denominator of
(3.2), by needing var((Re¢(P))2), is more complicated in the higher order
moments it involves relative to the denominator of (3.1) which needs
var(Re{P)). However, both correlations, and particularly (3.1), are more
tractable than the autocorrelations of ((Rt(P))z) or the crosscorrelations
of (Re(P)} ana ((Re(P))2),
Example (Continued from (2.11)): The (nonGaussian) linear AR(1) model.

As an illustration of the use of (3.1) and (3.2), for the linear AR(1)

model, ((2.1) with p=1 and p instead of aj) there are the results

L re—1,-2,...
Corr((Xe—~u), (Re—p)€] -{skew(X) [v:::;§;]§ (1-p3)pF, r=0,1,... (3.3)

o r=—1,-2,...
Corr((Xe-u)2, Re-y] = Lkew(X) _var(X)_ 220° et rwo,1,... e

Var((x-p)¥}1%72 (1-p%)%
Note the faster geometric decrease in (3.4), for non negative lags,

relative to (3.3); also (3.3) contains more higher moment information. The

7
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behaviour of these functions - zero for r<0 and geometric decay for r»0 -
suggests linear models with skewed marginal distributions or nonlinear
models . Discussion of parallel results for two types of nonlinear model
are given in section 4.

The use of squaring in the construction of these higher order
dependency measures is recognized as being pragmatic and somewhat arbitary;
it does however lead to expressions involvinqiulected types of simpler
higher order cross moments. The end use of the higher order dependency
measures can either be exploratory for a given data set, to ascertain
whether there is appreciable nonlinearity present, or constructively, to
provide evidence for fitting suitable types of nonlinear model which can
match the observed higher order dependency.

Earlier discussion of higher order dependence in nonGaussian linear
models is given by Rosenblatt (1980) in terms of the bigpectrum; aspects of
nonlinearity and higher order spectra are briefly considered in Rosenblatt

(197%).
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4. HIGHER ORDER DEPENDENCY POR TWO TYPES OF NONLINEAR MODEL

In this section we obtain properties of the measures of higher order
dependency discussed in the previous section, for two specific types of
nonlinear models. The models considered are autoregressive in the
Yule—-Walker sense of (2.4), but not in the linear sense of (2.1).
4.1 Random Coefficient Autoregressive Models

As already remarked 1in Section 1, a generalization of the linear
autoregressive model (2.1) is to let the coefficients *1,62,...%p be random
variables. One general class of such models has been discussed by Nicholls
and Quinn (1982) who cite Andell (1976) and articles in the economic
literature. Other classes of models with random coefficients include the
discrete distribution models of Jacobs and Lewis (1983) and the exponential
models of Lawrance and lewis (1981,1985). The class of random coefficient

autoregressive processes considered here is given by

Xe = Al 0xe 1 +Ae(2)xe o+, . +AL(P )Xy _p+Be t=0,$1,22,..., (4.1)
where (A¢(1),a4(2), ... A (P) By} is independent of Xy¢—j.X¢-2,... and forms
a stationary vector sequence of tndependent random variables where

E(A¢(3))=aj for j=1,...,p satisfy the standard polynomial equation. The
components of the vectors are not necessarily independent. For example the
discrete distribution models of Jacobs and lewis (1983) can be written in
this form, and have dependent coefficients, as do the exponential models of
Lawrance and Lewis (1981, 1985). It is easily verified that the process
(4.1) satisfies conditional expectation autoregression (2.2) and thus also
the weaker Yule-Walker definition (2.4); it will also clearly be
stationary. Note as well that the standard linear autoregressive model
(2.1) is a special case of (4.1) in which the random coefficients are
actually constant.

We now give a characteristic result for this type‘ of process when

higher order dependency is measured by Corr[Rt(p),(xt+r—u)2] or

Corr(RelP), (Resr(P))2], assuming that the R¢{P)'s are uncorrelated.
t t+r




iy Theorem. With the random coefficient model (4.1),

R corr(Re(P),(Xe—r~u)2] and Corr(Re{P),(Re-r(P))2) are equal to zero for
r=1,2,....

th Proof: Using the definitions (2.5) and (4.1).

i Re(P) = (Xg=p)=ay(Xp—1=n)=. . .=ap(Xe-p=H)

\ = (Ap( 1)y )Xey + (A€ 20 )Xemp + ... + (At(p)'“p)xt-p

;2;: + Bt-(l—al...-cp)y. . : (4.2)
i;ﬁg On multiplying (4.2) by (Re—p(P))2 and taking expectations, thus obtaining
;2 Cov{Re({P), (Rg~p(P))2], we have a sum of p terms given by

P :
o £ E{(A{3)~ay)Xe-3(Re-r(P))2) (4.3)
oy i=1
5 and a last term involving By which is clearly zero. Now Ag(I)~ay is
iﬁ; independent of both the X¢.jy and (Re-p(P))2, for r=1,2,..., which may
;:1 nevertheless be themselves dJdependent. Thus the jth term in (4.3) becomes
%3 E(A(3)=a5)E(Xg-§(Re-(P))2) = 0 for r=1,2,...,
R since E(A(j))-aj. This completes the proof which clearly includes the
:.;' first cross correlation mentioned in the theorem. The proof highlights the
E;E; fact that t(t (s the {ndependence of the vector of coofftcffonts
:g.' (At(l),...,ht(P),Bt) on previous Xs's which creates the effect in this type

%: of model.
{, t

~i The results of the theorem can be used to help validate random coef-

’::| ficient autoregressive models; also useful in this respect are the non-

1;‘: zero higher order residual crosscorrelations, e.g. for positive r

zz:: Ccorr(RelP),(Re4r(P))2]. These have been obtained for the second order

:::: autoregressive exponential process studied in Lawrance and Lewis (1985);

.& similar results for any first order random ccefficient model of the type

i:: (4.1) are given in the next subsection.

,i; It is worth noting that with Gy., defined as any reasonable function of .
e (Xpmp: Xgwp-1:...), @ similar argument to that given in the proof shows that

Ji Corr(Re(P),Ge_r =0, r=1,2,... . (4.4)

::? A result of <this type is not, howe]sber, sufficient to establish, for
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instance, that Re(P) and Ry (P) are independent; they are dependent.

The random coefficient autoregressive structure of (4.1) is not a

necessary condition for the results of this section to hold; this may be

‘Lé;: illustrated by noting that Corr{Re(P),(Xe-r-u)2] is zero when
:‘:;*':‘: ’ C12(r)eE((Xe~4 ) Xg-r-u)2) satisfy the equations

W‘ . C12(F)=a)C12( -1 )14a2C1 2(F~2)+. . . +apCr2(T=P), T=1,2,... . (4.5)
a:l:. The similarity of these equations to standard Yule-Walker equations (2.4)
3% will be apparent. Thus any process with this property will have

o Corr[Rg(P),(xt-r-u\zl equal to zero for non—-negative r.

‘-:: 4.2 Higher Order Dependency for Pirst Order Random Coefficient

o Autoregressive Nodels

t' The model to be considered is the first order (p=l1) case of (4.1), now
:.;: to be denoted as

:‘ ‘ Xe=AeXe—1+Be, t=0, =1,22,,.. , (4.6)
: ; in which Ay and By are independent between each t, but within themselves

may be dependent; we also write
a=E(Ay), H=E(Xg)=(1-a)~1E(B).

Many basic mathematical and probabilistic properties of this equation have

'“-:
f’t:‘i been studied by Vervaat (1979). Interest here is restricted mainly to the
rue regidual crosscovariances of (th,Rt-r) and ((Xg-p)2,Re—r] where Ry is the
)
D
: first order residual given by
.
e Yo - -
e.::g.. Reg=Xe—p-a(Xeg-1-K). (4.7)
3.,_‘ It has been established in Section 4.1 that Cov(Rg,Rg—g?)=Cov(Re2,Re4y )=0
I—’ for r=1,2,..., and so now Cov(R¢2,Re_y) for r=0,1,2,... is obtained
-
.
L ox| explicitly.
hy 2%
The calculation begins by writing the required covariance as
3ol
WM
*-\.; Cov(Rt2, Re—y )=E{ [ ( Xe—n )-a(Xg-1—#) 12 [(Xe-r—H )-a( Xg-p-1—) 1)
*‘!
;‘0 ": =Ca1(r)-acCz3(r+l1)-2a{Cy33(r)-acCyii(r+l1))
Ty
® +a2(Cy3(r-1)-aC3(r)) (4.8)
‘l& where, as defined just before (4.5), ,
» 1
}..\ Co1(E)E{(Xe=p)2(Rp—y=)),  C111(T)=E((Xg=p ) Xe—1=h )} Xp—y—i) ] . |
b3 |
l‘zt\ [
® 1 |
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"y =
t
- The higher order triple moment Cjj31(r) is easily seen to be equivalently
RN
.: given by aCz3(r-1), in the present instance, and hence (4.8) becomes,
)
U
'.::: Cov( Re2, Rywy )=Cp1( £ )-aC1(x+1)-a2(Cp1(x~1 )-ac2i(r)), r=1,2,... (4.9)
- Por r=0, with u3=E{(X¢-u)3), there is the seperate result
_e E(Ry3 )a( 1+2a7 Ju3-3aCyy(1). (4.10)
’g The calculation of Cz1(r) is effected by writing the defining equation
. (4.6) in the form -
§
W Xe—p=Ap( Xeo1=1 )+ uhe+Be—u)
:: Squaring both sides, multiplying by Xe-r—u, and taking expectations then
: gives
A C21( ¥ )=a3C31(r-1)+2( uaz+E(ALBt )~ua)C(r~1) (4.11)
» where
\
s C(r)mCov( Xy ,Xg—y)=a¥o?, olavar(Xe), azmE(A?).
-
A
) Further simplifications of (4.11) give the recursive equation
° C21(r)=asCai(r-1)+kar-1, r=1,2,..., (4.12)
ey where
K~ k=202 (uvar(A¢ )+Cov(Ag, By )).
_\‘
: Equation (4.12) has explicit solution
I~
. Czi(r)mazFuj+k(asF-aF)/(az-a), (az=a)
3 r=0,1,... . (4.13)
j =afuy+kraf~1 , (agz=a)
:{.; Going back to (4.9) for Cov(Re2,Re—r) and using (4.12), we have finally
o, Cov(Re2, Ry )=(az+adaz-aaz2-a2)Cyy(r-1)
e +(1-a2+a3-aa, )xar-l, r=1,2,... . (4.14)
; \ Thus, (4.14) and (4.13) constitute the explicit solution for the
’_ crosscovariances of the residuals (Ry2,Ry_r); notice that when Ag is the
@
S\ constant a, the case of the standard first order linear model, these
>
"’:C crosscovariances are correctly zero. The NEAR(1l) model of Lawrance and
‘ Lewis (1981) specializes (4.6), by having independence within each (A¢,By)
" and the particular forms
1
)
1
& - p w.p. « - - l w.p. p
'.' Ae {o w.p. l-a’ Br = KeEe. Ke {b w.p. 1-p
L
¥ where .
e b = (1-a)8, Pp = (1-8)/(1~(1-a)0)
(
IS
'- and (K¢} is an independently dis]tzri.buted exponential sequence with
)
%
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parameter A.
) If the covariances (4.14) are to be converted to correlations, then

Var(Ry) and Var(Ry?) must be obtained. This requires the following

calculation,
var(Re2) = E(Rg*) - (E(Rg?))? . (4.15)
’ where
E(Rg2) = (1 - a%)0? = var(Rg), (4.18)
i E(Re4) = (1+a%)uq - 4aC31(1) + 6a2Cz(1) - 4a3C13(1), (4.17)
with

He=E((Xe=1)4], C53(1)=E(Xe=p)E(Xe—1-1)3], (£,3)m(3,1),(2,2),(1,3).(4.18)
The joint moments in (4.17) are now obtained in terms of the first four
moments about the mean of Xp, together with the first three moments and
joint moments about zero of Ay and By. Thus in terms of the further
quantities

a3 = E(A¢®), by = E(Bg?), dij = E(ALBY),  (1,9)=(1,1).,(1,2),(2,1) (4.19)

we have, as with the derivation of (4.11), that

€31(1) = 3p2c?a-3u(uz+2uc?)az+(ue+3upy+duio?)ag

. —6;&0‘6114-30‘(!124‘3( u3+2,u03 Y421 (4.20)
Ry
o

ﬂ?; C22(1) = -u202-2upja+(ug+2upz+uia?das

X

,:S;' +03bo+2(ugy+uctidy;, (4.21)
(AN

i C13(1l) = ugaa. (4.22)
':l The results (4.20)~(4.22) have been checked against an alternative method
N

™M 3

'::}f of calculation involving moments about zero instead of about u.
(,l.. " It was remarked in Section 3, following (3.2), that the cross-
A

D0

x:'“' correlations of (Xe—u)? and Re4r(P) can also be useful in assessing higher
MR,

o order dependence. In the present case of first order residuals and
oy 3

“ autoregression there are the results,

'

ahy

ﬁf Cov[(Xe-n)2, Re—r] = C2i(r) - a C23(r+l), (4.23)
.03

of

:‘:.. var(Re) = (l-a?)g?, var((Xe-u)?)] = uq - o¢. (4.24)
i“k’ :

These formula can all be applied to the NEAR(1) model of unit mean by

g

40 simply noting that in this case

i 13

AME, . e , o ; . ) ! - : .
* LAY WA WP /RN X s R A K ) 4 OGO 4 Ny ' !
A A S : B it S e T A RS T RIS EN TotTCR r  Ba R A TN C

Ny




E(AeT) = aff, E(BeT) = ri(p+(1-p)b¥]. (4.25)

Pigures 1 and 2 give the results of computations of Corr[ktﬂnt-;] and
Corr{(Xe=i)2,Rp-y] for the NEAR(1) model. The top left frame of Figure 1 is
the linear EAR(1l) case for which all cross—correlations apart from lag zero
are zero; the other three <cases in PFigure 1 each have zero
crosscorrelations at negative lags, in agreement with the theocretical
results in Section 4.1, but have scme non—-zero values at the zero and

Positive lags. It is evident that the lag zero cross correlations contain

A a=0.999. $=0.738: SAR(1) Caose s a=0 910, S=) 824
- v v A 1 - T 13 Y
- ’ - ad -
— "
_," ok h A,‘ : B .
£ | & |
- J o~ L }
> . > i
z i & '
< of - = o) t 4
3 3
:2 b - z o -
2 n 2 n
S 2p 9 S ?F -
- 1
EJ . 2
e =10 ) 10 20 =) 0 )
: - 0 S
Lag(r) Logir)
° aw(.857, 3=0.87%; PRSAR(1) Case s aw0.758, $20.990: TEAR/1) Case
- T O T O T - T 1) L T . .
- L .
~_—n
z: ° b ’} 3 B 9
. z—
s F ) . N 1 o
x . b |
< o |||l||.... ] §°_ H|H“l|. .....
- - 7
: = |
g . - 8 - '
2 o | S wn {
o 9 g S 2F p
o B o -
21, . . ) -]
T -10 o 10 20 Te3 l o ) '
B - ° 2
Lag(r) Lag(r) °

Figure 1, Four computations of the crosscorrelations, for vartous lags,
betueen the linear autoregressive residual, R.(P) and (Ry(P))2 for the
NEAR(1) process wish p(i)=aB held constant at 0.75; in effect the remaining

free parcneter is deing varied through its allowadle range.
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much of the discriminating information between the four cases; this will be

e
'..
2",_ so for first order autoregressive models in which much of the higher order
i.y
I
:j:‘ dependency is at lag one, and the lag zero cross correlation involves both
) third and fourth order aspects of the lag one dependency. For further
9(
[N
‘i iniormation on the TEAR(l) and PREAR(1) cases see Lawrance and Lewis
i (1981).
R
v Pigure 2 gives Corr{(Xe—u)Z?,Re-y] for the same four cases used in
'l"
0.. .
:a: Pigure 1. The negative lags are again zerc for all cases, and hence this
} .
"
.za‘ property does not digscriminate the linear from the nonlinear cases. Rather
‘3
it is the strength of the crosscorrelations at positive lags which performs
e
\
;' this task, aldbeit less clearly than the crosscorrelations of the residuals
~
3:: and squared residuals.
[/
d R a=0.399. J=Q 7S3; ZaR(!! Zage a=0§10, 3e0 824
P L L !
& - ) 5
» el ! ’T’ " !
» <2 . 1 < 2 : 1
N L n [ ; !
EL * oy 1 20 | ]
!~ :3- .|!‘” _1 £°' Ve i
4 P 13 ‘
N N
2 2F ~ 1 2 ?F 1
4 ” S
5 - Ml
2L . ° : : :
W To 0 0 0 20 V-0 T ) 10 B}
g Log(r) Leg(r)
J; a a=)257. 420 875, PREAR(1) Cass . a=0 738. #=7990: TEARL 1) Case
” - . O e - fT bt v v
e )
., - - -t
] ~ " = E ‘\T ol
:.n f ° [| 5- ° "
T+ o 4 2t 1y .
: - i - HiNE
:h < af Phi e oL . X of Gl b
b 3} 1 3| J
::: ﬁ bl ﬁ " l
2 o -
‘g 27 ger
) 5 4
. b
. 2 i a1 N !
] YY) -0 ) 0 0 T - ' T
::' Lag(r) P Lagin ’ ?
L)
5: Figure 2. Four computctions of the crosscorrelations, for various lags,
]
() .
W besween the linecr autoregressive residual, Rt(P), and (Xy-u)? for the
Qo

NEAR(1) process with p(1)=af held constant at 0.75; in effect the remaining

a5

A~

free parameter is Deing varied through its allowadble range.

15

e PN
@ I

”

AT BRI 2 1> m A LSS B 1YY, ) : T AN AN P T A N e T AT AT A TR
RIS NN 4 (i U0 Y ‘e,A’y.&‘a).t’.-. e Rl WX BRI AT ',l';?i'_.,l‘a. " * .l Whatithen a0 \b‘lo !h. .‘ﬂ.- haaNahidghah,




Wl N AAey -l Rl et T T AT

4.3 mmw&:mmmmmmu

WA Another form of nonlinear autoregressive model, called PAR(1l), was
)
i:«;;: introduced by McKenzie (1982); the basic idea of its construction is to
‘a;‘,ao
":"f"‘: consider the exponentiation of the standard AR(1) equation. Then its

. additive structure becomes multiplicative, and the general form of the
. PAR(1l) product autoregressive model model is

Xe=(Xe—1 )PBe, t=0,21,22,..., (4.26)

where p is the dependency parameter, O<p<l, and .(Bt) is an independent and

identically distridbuted innovation sequence, independent of Xp-j,Xe-2.:..

McKenzie studies the model when By is chosen so that (X} has a gamma

. marginal distribution, and obtains several basic results; for instance,

':.':36}: that p still represents the lag one autocorrelation and that the

:E autocorrelations in general satisfy the Yule-Walker first order equations

A_ ((2.4) with p=l), so that p(r)=pTf, It is apparent, however, that the H
:&:}‘: linear conditional expectation definition of autoregression (equation

,' (2.4)) is not satisfied because of the power form implied by (4.26).

0

As with the first order random coefficient models in Section 4.2, we

i ? consider the first order residual Ry, given by (4.7), and will likewise
-ﬁ‘.: determine Cov(Ry2,Ry_y) for r=0,%1,%2,..., noting that for this model these
’:5‘ correlations are non-zero for all lags. We will use the general expression
‘;’:fi; (4.8) in terms of the third order central moments Cz3(r) and Cjji(r), but
E;::( this time there is no simple relation between them, and both are needed for

all lags, Also, calculation of Cp3(r) and C;j3;(r) must be in terms of

;ﬁ their uncentered components, since these are the quantities which can

'4' immediately be determined from the PAR(1l) equation (4.26). The required

BN\

'*‘ uncentered moments will be written as

:' Y Qz‘E(th), e3-E(x-g3) ‘
N (4.27)

IR €21(r)=E(Xe2Xer), 11107 )=E(XeXe-1Xe—r)

L2 4

for r=0,21,22,..., and there is need to note the special cases,

;:é:\' €21(0)me3, e1)1(0)me; (1), e313(1)=e2;(-1).
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All these quantities will be calculated.
Pirst, it is necessary to note the following relations between the
centred and uncentred moments,
C21( )=z (¥ )~u3-2uc(x)-uo? (all r)
€111(0)=C21(1), €111(1)=C21(-1) (4.28)
C111(r)=e111(F)=p3=p{C(THC(r=1)+C(1)}, (r=0,1).
The calculations of e3;(r) and e1313(r) need to be treated separately
for positive and negative lags, but follow in the same general manner and
will be illustrated by that for e;j1(r) for positive lags. By iterating the

PAR(1l) equation (4.26) r steps backward,
-1
Xe = xt_rp(r) n nt_ip(i)
i=0
where p(r)mpf,r=0,1,.... Squaring this equation, multiplying it by X¢—r

and taking expectations, gives

r-1l
€21 (7)=E(Xe-r2P(T)*1) 1 E(By-32P(1)). (4.29)
i=0

To obtain the expectations in the repeated product, taking the 2p(i)th
power of (4.26), leads to
E(xg2P( L))o (xe— 2PP(1))E(B 2P(1)),
and hence, dropping the unnecessary suffix t, to the result
E(B2P(1))ap(x2P(1))/E(x2P(1+1)),
Now (4.29) can be expressed purely in moments of X, as
021 (x)=E(X2P(T)*+1)E(x2)/E(X2P(F)), (4.30)
To proceed further, invoke a gamma marginal distribution for X with density
£(x)=0PxP~1e~9%X/r(p), 6,850, X0, (4.31)
this has mean 0/6, variance /62, third centta.l moment 28/63, and there is
the kth moment result E(XX)=r(p+k)/6Xr(p).  From (4.30) and similar

expressions we then have

_ [B(B+1)(B+20T /03, r=1,2,...
e21(r) {a<a+p"')<a+p"'+1)/e3. r=—1,-2,... (4.32)
B( B+p )( B+pT 14p7 ) /03, r=2,3,...
() = [o<o+p"')(o+p+p"'*1)/a3. r—1,-2,... (4.33)
17

e LN ] [AMTN] », N ol S \ - o
B T e S

BN




with €21(0), €1311(0) and e€311(1) being given by the special cases of

Sy (4.27). Use of (4.28) gives finally the required expressions

caate) = (0T eg2in e, . e
*tj.‘, .

| cuna(n) = (O i) 0 gl (439
::.g All these may be used in (4.8) to obtain the desired result for .
::;f: Cov(Re2,Re—~y) as

f% 28(1-p2)2pF/e? r=1,2,... ]
o:':' Cov(Re?,Rg-r) = {a( 2-6p%+p3+3p*)/0°2 _ ) =0 (4.36)
u -B(1-p)(1-p2)2p2 ¥I=1/03  ym-1,-z,...

ﬁ; The simpler covariance of (X¢—-u)2 and Reg—y also follows via (4.23) and
i (4.35) as

Y 26(1-p2)pT/03 r=0,1,...

ok cov((xew)® Remr) = {20170, 8171160 re—1,-2,... (4.37)
{: :::‘ Conversion of these covariances to correlations requires Var(Ry¢?) as at
(" (4.15) and var[(X¢-u)2) as at (4.24); the required intermediate results are
E‘ Ke = 3B(B+2)/0%,

E% C31(1) = 34(B+2)p/0%, C13(1) = B(3B+(1+p)(2+p))p/0%,

N C22(1) = (B2+2pp+28(B+2)p2)/6%. ) (4.38)
: These then give as at (4.15)-(4.18) the explicit expression

-;' vVar(Re?) = 28((8+3—2(8+6)p3+6p3+(p+11)p*-6p5-2p00%)/0¢4. (4.39)
‘1:5 Together with Var(Ry) which is simply (1-p2)B3/62, Cov(Rg?,Rg_y) can be
AN

EE;? converted into Corr(Riy2,Re-p). Similarly, (4.37) requires the result

'é: var((Xe-u)2) = 2p(p+3)/6* | (4.40)

in order to obtain corr((Xe-w)?,Rgl.

Figures 3 and 4 illustrate the residual and squared residual cross
correlations for the PAR(1) model. Figure 3 shows how these residual cross
° correlations vary over the range of p values from p=0 to p=0.9 for an
0,: exponential marginal distribution. At p=0, the PAR(1l) is an IDD process '
:. (] and the residuals are trivially independent, resulting in the only non-zero
i) crosscorrelation at lag zero. As the p value increases the dependence

spreads out, mosc stronqgly at positive lags. An interesting feature is the

18
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lag zero crosscorrelation which changes from being strongly positive at p=0

to approximately zero at p=0.75, to moderately negative at p=0.9
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:;.a‘ Figure 3. Computations of the residual crosscorrelations, Corr(Re2,Re.p)
&
LB
) for the PAR(1) model. Since p=1 the marginal distridbution is exponential.
.V
)
;Q‘ ] The lag one serial correlation is increased from p(1)=0.0 (upper left) to
! |
)
"é p(1)=0.9 (lover right).
W
. .
o
%ﬁi Figure 4 gives four different gamma cases of the PAR(1) residual cross
'g correlations, all with p=0.75. The gamma shape parameter g takes the
Ry
e values 0.5, 1.0, 2.5 and 10.0; these cases indicate that changes in the
ti:" gamma parameter cause only slow changes in detail of the cross correlations
e
;(t which from the formulae (4.37), (4.39) and (4.40) all tend to zero as [-w.
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%:v Figure 4. Computations of the residual crosscorrelations, Corr(Re2,Re.p),
1)
W
o]
N for the PAR(!) model. The p for ecch case of 0.75, and the figures
1A
" illustrate the effect on the residual crosscorrelations of changing the
v,!
= inde= B of the gamma distridution through 0.5, 1.0, 2.5 and 10.0.
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by
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(- 5, CONCLOSIONS
1
D5 . . .
N A methodology for analyzing higher order dependence in nonlinear time
&
N,
j series with pth order autoregressive correlation structure has been
" proposed. It utilizes standard uncorrelated linear autoregressive
N
N
f-i% residuals, and the crosscorrelation function of these residuals and their
b A
k‘
t . . . . R
h squares. The behaviour of this crosscorrelation function has been utilized
+
4 for two rather different types of nonlinear model: random coefficient
o
"
iy autoregression and multiplicative autoregression: the behaviour has been
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shown to allow discrimination between models in the same class with the
same marginal and autocorrelation structures.

The residuals crosscorrelation function provides a partial analysis of
third order information in the time series; it does not attempt to capture
all third order information, which is the aim of such techniques as
bispectral analysis and which will often be intractable with nonlinear
models. Being based on standard linear residuals, the analysis extends
rather than replaces conventional residual analysis.

Developments of the analysis which focus on the directionality implicit
in many time series are being investigated; reversed residuals assume a

reversed directionality and allow exploration of the consequences of such

an asssumption.
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